Special Lubricants for Open Gear Drives
Special Lubricants for Open Gear Drives

BECHEM – Lubrication solutions for industry

As the oldest German manufacturer of industrial lubricants, BECHEM today is one of the leading producers of high-quality special lubricants and metal working fluids.

BECHEM products convince by innovative formulations in the most diverse of industrial applications – in machining and forming metal working processes, in coating technology and as for-life lubricants in various technical components.

A strong network of distributors and several national and international production sites ensure that BECHEM products are readily available worldwide.

Tomorrow’s technologies. Today.
The BECHEM Open Gear Lubrication System

Due to low speeds and very high torques to be transmitted, and the fact that hydrodynamic lubrication conditions are barely attainable, the tooth flanks of open gear drives are at risk of damage. Deformations depending on temperatures and loads, inaccuracies in adjustment and insufficient lubricant supply, but also the use of unsuitable lubricants, often result in tooth flank damage although high quality gear materials are being used. Precision alignment, a carefully carried out running-in process and highly sophisticated lubricants can prevent or minimize such damage. The importance of high quality lubricants is continually rising with greater drive dimensions.

Based on many years of experience, BECHEM has developed a series of products which meet the requirements of all types of open gear drive. BECHEM offers a wide variety of gear greases, high-viscous fluids and gear oils dependent upon size and speed of the drive, torque to be transmitted, operational and environmental conditions, and above all application method.

For many drives, gear greases containing graphite have proven to be most effective. For these drives, BECHEM has developed the Berulit Open Gear Lubricant System. It is based on a very stable metal complex soap and contains selected solid lubricants as well as a combination of special additives. The high graphite content in the products protects the flanks even under lubricant starvation conditions. For other drives, high and ultra-high viscous gear fluids perform better. Here BECHEM offers the high performance products in the Berugear HV series. Both product lines reduce wear and permit operation under the most severe of service conditions. The products of the Berulit and Berugear Open Gear Lubricant Systems are free of chlorine and bitumen and do not contain any toxic heavy metals or solvents.

Berulit and Berugear Open Gear Lubricants protect open gear drives such as those deployed in ball mills, rotary kilns, driers and mixing drums used in the cement, lime, steel, paper and fertiliser industries and in mineral processing. They ensure prolonged service life of the drives with simultaneous low consumption rates. The products are also excellently suited for slewing gears of shovels, excavators, draglines and cranes.

Large open gears can only operate safely if contact pattern and surface quality have been optimised by running-in processes. These running-in processes require special products which, together with BECHEM service lubricants, form a complete system. The lubricants harmonise so that cleaning after each individual process is not necessary. Custom products are available on request for the treatment of special tooth flank.
Priming Lubrication with Berulit 443 or Berugear HV PR

Berulit 443 and Berugear HV PR prevent lubricant starvation and – as a consequence – initial damage for the period before the lubrication system enters operation.

The drive should be fully aligned before application of the Berulit 443 or Berugear HV PR priming lubricant. The measurement results of axial and radial run-out as well as backlash and root clearance should be recorded.

Before the priming lubricant can be applied, fat-free cleaning of the whole tooth flank surface, such as by a cold cleaner, is necessary. Then the priming lubricant is “pushed” liberally onto the flanks by brush or spatula. To ensure that the tooth flanks get the best conditioning, the layer should be at least 1.5 mm. Intensive application on the tooth flanks prevents formation of air pockets, which could later have a negative impact on the formation of the lubricating film. For the root and the tip of the tooth flanks, and the non load-bearing flanks, a thin application as corrosion protection is sufficient.

Using Berulit 443 / Berugear HV PR

- The following diagram can be used to calculate the quantity Berulit 443 or Berugear HV PR. For a double pinion drive, the quantity must be multiplied by 1.15.

- The gear cover should already be mounted to prevent dust from sticking on the tooth flanks before application of the Berulit 443 or Berugear HV PR priming lubricant.

- Berulit 443 or Berugear HV PR also simplifies inspection of the contact pattern during installation and alignment. By turning the gears with the auxiliary drive, the real contact pattern can be seen as a projection of the priming lubricant on the opposite wheel.

- Berulit 443 and Berugear HV PR may not be applied in automatic spraying systems.

Minimum Quantity Priming

Berulit 443 / Berugear HV PR

- The following diagram can be used to calculate the quantity Berulit 443 or Berugear HV PR. For a double pinion drive, the quantity must be multiplied by 1.15.

- The gear cover should already be mounted to prevent dust from sticking on the tooth flanks before application of the Berulit 443 or Berugear HV PR priming lubricant.

- Berulit 443 or Berugear HV PR also simplifies inspection of the contact pattern during installation and alignment. By turning the gears with the auxiliary drive, the real contact pattern can be seen as a projection of the priming lubricant on the opposite wheel.

- Berulit 443 and Berugear HV PR may not be applied in automatic spraying systems.
Controlled Running-in with Berulit EL 420 or Berugear HV RI

Running-in lubricants are applied to increase the effective contact pattern of tooth flanks within a short period of time by chemical physical processes in order to ensure operation under full load.

Before starting the running-in process, the functionality of the spraying system must be guaranteed. This includes the check of the nozzle adjustment and the spray pattern. The installation of a system which enables checking of the spray patterns during operation is recommended. During the running-in process, the spraying system has to be adjusted to continuous or maximum lubrication. This not only improves the supply of lubricant to the flanks, it also guarantees that small particles from the process of reducing the surface roughness are taken off.

The requirement of Berulit EL 420 or Berugear HV RI during the running-in process is 6–12 g per cm tooth width and operating hour, depending on the characteristics of the drive. An exact calculation is possible using the diagram on the following page.

The duration of the running-in process depends on the type of drive and factors such as mounting accuracy, material and production quality. 300 to 500 operating hours are generally necessary.

Running-in lubricants are applied to increase the effective contact pattern of tooth flanks within a short period of time by chemical physical processes in order to ensure operation under full load.

For drives to be lubricated manually or by immersion, special running-in procedures are provided by BECHEM technicians.

The values stated are intended to serve as a guide. They can vary considerably according to conditions. The condition of the tooth flanks and the contact pattern achieved form the basis for the decision as to subsequent action. Changing to the next load stage is only recommended if a contact pattern of at least 60% in stage 1 and 70% in stage 2 has been achieved.

The running-in process should only be finished after the surface roughness has been smoothened and a contact pattern of at least 80% at full nominal load has been achieved.

The condition of the tooth flanks as well as the contact pattern has to be checked continually during the running-in process. The manufacturer of the lubricant and the supplier of the drive should be contacted in the event of potential damage or a negative development of contact pattern.

During the running-in process, the load has to be increased in stages. Running-in under full load can result in tension peaks and as a consequence in initial damage.

Appropriate load for ball mills

<table>
<thead>
<tr>
<th>Duration</th>
<th>% Filling</th>
</tr>
</thead>
<tbody>
<tr>
<td>80 to 110 h</td>
<td>60–70%</td>
</tr>
<tr>
<td>100 to 150 h</td>
<td>approx. 80%</td>
</tr>
<tr>
<td>150 to 200 h</td>
<td>90–100%</td>
</tr>
</tbody>
</table>

The duration of the running-in process depends on the type of drive and factors such as mounting accuracy, material and production quality. 300 to 500 operating hours are generally necessary.

For drives to be lubricated manually or by immersion, special running-in procedures are provided by BECHEM technicians.

The values stated are intended to serve as a guide. They can vary considerably according to conditions. The condition of the tooth flanks and the contact pattern achieved form the basis for the decision as to subsequent action. Changing to the next load stage is only recommended if a contact pattern of at least 60% in stage 1 and 70% in stage 2 has been achieved.

The running-in process should only be finished after the surface roughness has been smoothened and a contact pattern of at least 80% at full nominal load has been achieved.

The condition of the tooth flanks as well as the contact pattern has to be checked continually during the running-in process. The manufacturer of the lubricant and the supplier of the drive should be contacted in the event of potential damage or a negative development of contact pattern.

During the running-in process, the load has to be increased in stages. Running-in under full load can result in tension peaks and as a consequence in initial damage.
Cleaning of the tooth flanks before switching from running-in lubrication to service lubrication is not necessary. At the beginning of the application of service lubricants, the increased quantity from the running-in process should be applied for approx. 50 hours. After that, the quantity has to be reduced in stages to the normal quantity. A reduction in stages of 1–2 g/cm² and hour during 50–150 operating hours has proven successful. After each reduction, a check of the condition of the tooth flanks and temperature distribution is necessary. The quantity must be increased again for negative changes.

A reduction in usage quantity is achieved with prolonged interval periods or a reduction of the lubricant quantity of the pump. For instructions on the adjustment of the spraying system, please refer to the corresponding manual.

Interval and spraying periods as well as the quantity to be sprayed should be as small as possible. This prevents stronger fling-off effects of excess lubricant or lubricant starvation due to exceeded life time of the lubricant film.

Provided the operational lubricant is not sprayed on the girth gear flanks, the interval and spraying periods should be adjusted to be within the seconds range. Interval periods longer than five minutes should be avoided.

After idle periods longer than 3 months, the drive should again be started with continuous spraying.

The lubricant quantity required depends on design details as well as on the present condition of the drive. The condition of the tooth flanks as well as contact pattern and temperature distribution should be taken into account in particular. The diagram on the opposite page helps to determine the minimum quantity with regard to type of gear drive. Values below the minimum increase the risk of wear and damage and can reduce the life time of the drive. The values must always be increased for unfavourable operating conditions.

With regard to service conditions and sprayability, a reduction in lubricant quantity of up to 20% is possible when Berulit GA 2500 is applied.

Operation of a gear drive with such small quantities requires, however, continual checking and regular cleaning of the spraying system.

Under normal service conditions and for undamaged tooth flanks, the application of Berulit GA 400 as a service lubricant is sufficient from a tribological point of view. For high service temperatures, extreme loads, unfavourable contact conditions and / or damaged tooth flanks, we recommend the application of Berulit GA 800 or Berulit GA 2500. These products have a higher base oil viscosity and thus form a more stable lubricating film.

For Open Gear drives with increased requirements made of lubricant film life time due to very long spray intervals, Berulit GA 800 or Berulit GA 2500 should also be used.

Interval and spraying periods as well as the quantity to be sprayed should be as small as possible. This prevents stronger fling-off effects of excess lubricant or lubricant starvation due to exceeded life time of the lubricant film.

Provided the operational lubricant is not sprayed on the girth gear flanks, the interval and spraying periods should be adjusted to be within the seconds range. Interval periods longer than five minutes should be avoided.

After idle periods longer than 3 months, the drive should again be started with continuous spraying.

The lubricant quantity required depends on design details as well as on the present condition of the drive. The condition of the tooth flanks as well as contact pattern and temperature distribution should be taken into account in particular. The diagram on the opposite page helps to determine the minimum quantity with regard to type of gear drive. Values below the minimum increase the risk of wear and damage and can reduce the life time of the drive. The values must always be increased for unfavourable operating conditions.

With regard to service conditions and sprayability, a reduction in lubricant quantity of up to 20% is possible when Berulit GA 2500 is applied.

Operation of a gear drive with such small quantities requires, however, continual checking and regular cleaning of the spraying system.

Under normal service conditions and for undamaged tooth flanks, the application of Berulit GA 400 as a service lubricant is sufficient from a tribological point of view. For high service temperatures, extreme loads, unfavourable contact conditions and / or damaged tooth flanks, we recommend the application of Berulit GA 800 or Berulit GA 2500. These products have a higher base oil viscosity and thus form a more stable lubricating film.

For Open Gear drives with increased requirements made of lubricant film life time due to very long spray intervals, Berulit GA 800 or Berulit GA 2500 should also be used.
Berugear HV –
Light-coloured high-viscous service lubricants

Berugear HV is synonymous with a new generation of light-coloured high and ultra-high viscous service lubricants. The fluids in the Berugear HV series are intended to be used for large gear drives with higher requirements concerning life of lubricating film, operational viscosity, thermal stability and difficult discharge conditions, and for those drives for which the black colour of conventional adhesive lubricants is undesired. They are available with different viscosities.

Berugear HV fluids were developed to fulfill the requirements of AGMA 9005 D 94 and to meet the demands of some equipment manufacturers for gear lubricants of very high viscosity. Unlike other products, they do not contain solvents. They form very thick extreme adhesive light-coloured lubricating films on the tooth flanks.

Berugear HV fluids can be used for almost any open gear drive for grinding mills and rotary kilns. Best performance is, however, achieved if used for large gear drives of smaller modules exposed to very high tooth flank pressures or running with a high circumferential speed, gear drives with complicated discharge of used lubricant or gear drives with long intervals in lubricant application. Using drives without proper dust protection is not recommended.

Berugear HV fluids can be applied by spray systems, paddle wheel systems, circulation systems and dip systems depending on the base oil viscosity.

When applied by spray systems, the products in the Berugear HV series offer the possibility for a significant reduction in lubricant consumption. Lower disposal costs support the cost effectiveness of the products.

Lubricant quantity factor (g/mm tooth width/hour)

<table>
<thead>
<tr>
<th>Factor</th>
<th>0</th>
<th>0.2</th>
<th>0.4</th>
<th>0.6</th>
<th>0.8</th>
<th>1.0</th>
<th>1.2</th>
<th>1.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>drives of rotary dryers, coolers, slew ring gears</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>very small single pinion mill drives</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>medium single pinion kiln drives</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>medium single pinion mill drives</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>large single pinion mill drives</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>double pinion kiln drives</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>medium double pinion mill drives</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>large double pinion mill drives</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Service Lubricant Berugear HV 20
- Running-in Lubricant Berugear HV RI
Berulit GA Fluid –
Adhesive Gear Greases for Dip Baths

For gear drives with bath or circulating systems, special adapted products in the Berulit GA Fluid series are available. The improved flow characteristics of these products prevent lubricant starvation due to groove formation – the so-called channelling effect – in the dip baths. Special additives improve the adhesion of the fluids on tooth flanks.

A prerequisite for successful use of Berulit GA Fluid greases in dip baths is appropriate maintenance of the bath. The dip bath has to be protected from solid and liquid contamination. The lubricant level in the bath has to be checked and if necessary be topped up regularly to prevent starvation. The tooth flanks should dip into the lubricant by approximately 30% of their height during operation and approximately 50% of their height during stop. The paddle elements of paddle wheels should dip fully into the lubricant.

Open Gear drive with paddle wheel lubricated by Berulit GA 2500 Fluid
Spray Systems

The condition and operation of an installed spray system should be checked prior to the application of Berulit or Berugear Open Gear Lubricants. The check should include a functional test, nozzle adjustment, spray pattern and applied lubricant quantity. Special attention should be paid to an overlapping of the spray patterns of the singular nozzles. Gaps in between these singular spray patterns may easily result in initial damage.

The spray nozzles should be adjusted in a way such that the spray on the flanks of the pinion is at an angle of 30°. The distance between the outlet of the nozzles and the tooth flank surface should be approximately 200 mm.

A clean spray system is the prerequisite for preventing spray problems caused by ingressed foreign particles. Special care has to be taken when changing the lubricant drum and refilling the container. Transfer pumps in combination with an additional lubricant filter significantly reduce the risk of contaminated lubricant in the spray system.

The lubricant filter of the spray system needs to be cleaned regularly. With lubricants of very high viscosity in particular, there is a tendency for some components to settle down in the filter. When using lubricants with high base oil viscosity, we recommend cleaning the lubricant filter at least every 3 weeks.

For drives equipped with a spray system, continual dredging of the tooth flanks in the used lubricant in the sump must be prevented. It may contain abrasive foreign impurities. The used product therefore needs to be removed regularly from the gear guard.

The Berulit and Berugear Open Gear lubricants can be sprayed well in all common spray systems, taking the application temperature into consideration. Appropriate spray test results are available.
Comprehensive BECHEM Service

Reliable and cost-effective lubrication of open gear drives not only requires high performance products, but also skills to ensure their correct application and the ability to provide durable solutions for overcoming unfavourable developments. The combination of advanced products and skill of their service technicians has made BECHEM a leading supplier of open gear lubricants on all continents.

BECHEM provides regular service inspections as well as special maintenance support by our world-wide operating team of well trained technicians.

Given that product performance and quality of the service provided determine the life time of the machinery, the service component is highly rated by equipment manufacturers. The excellent service provided by BECHEM has convinced leading equipment manufacturers to recommend BECHEM open gear lubricants.

The service operations are planned and prepared in our Service Centres around the world. Coordination is managed at our headquarters in Hagen. The central reporting system and training of service staff are also organized there.

BECHEM service package for open gear drives

• Lubrication management with selection of the most suitable (technical and economical) product and optimisation of consumption rates and re-lubrication intervals
• Regular inspections of drives and application systems at agreed intervals including measurement of the temperature profile across the flanks and a vibration measurement at the pinion bearings, the assessment of contact pattern, gear flank condition and potential damage, as well as a complete check of the lubricant application system
• A detailed written report with appropriate documentation for each inspection service
• A lubricant consumption optimisation program
• Support in alignment of transmission gears in case of requirement
• Repair services such as grinding of pitting marks and mechanical treatment of flanks
• Support in optimisation of lubricant application systems
• Recommendations for improved protection of the drives from contamination or lubricant leakage
• Analysis of lubricant samples
• Preparation of inspection plans
• Single lessons or a complete training program for the plant staff

The package – with the exception of repair services – is provided free of charge to customers using BECHEM open gear lubricants over a longer period for their drives.